Evaluation Monitors and Projectors

Benchmarks and Observed Performance of LCD, Plasma, DLP, HTPS LCD, and LCoS

Grayscale Attributes

Dynamic Range

- Most LCD and plasma displays run too hot and cannot achieve consistent gamma
- -High-end clipping not unusual (white crush)
- -Most units are "tamed" when operated in the range of 100 150 nits (29 44 ft-L)

Color Temperature

- Consistent tracking of a given white point remains a challenge for TFT LCD
- DLP, plasma, 3LCD, LCoS much better

CRT Gamma

Plotted CRT Gamma Value - 2.3

TFT LCD Gamma

Grayscale clipping can be a problem with LCD (white crush)

PDP Gamma

Gamma curves can flatten too quickly with plasma

DLP Gamma

DLP can provide consistent gamma from black to white

LCOS - LCD Gamma

LCOS and LCD can emulate CRT gamma, too

CRT Grayscale Track

TFT LCD Grayscale Track

LCD grayscale tracking varies widely among brands

PDP Grayscale Track

PDP grayscale track is generally more stable than LCD

DLP Grayscale Track

Accurate grayscales depend on driving circuitry

LCOS - LCD Grayscale Track

Both technologies can track clean grayscales

Color Attributes

Color Saturation

- Range of saturable colors widest with color filters (dichroics), less with phosphors
- -RGB has wider gamut than sequential color

Color Accuracy

- Many displays have more cyan than yellow in the green channel for brighter images
- -Blue, red easier to line up accurately
- -Cyan, yellow often tough to match correctly

CRT Example 1

CRT compared to REC709

- SMPTE-C phosphor formulations used
- Blue close to ideal
- · Red close to ideal
- Cyan, yellow close to ideal
- Magenta shifted towards red
- Green shifted towards cyan slightly, but with equivalent luminance value
- Close match to REC709 gamut, but not enough saturation possible for DCI

CRT Example 2

CRT compared to REC709

- SMPTE-C phosphor formulations used
- Blue close to ideal
- Red close to ideal
- Yellow close to ideal
- Magenta shifted towards red
- Cyan shifted towards blue
- Green shifted towards cyan
- Close match to REC709 gamut, but not enough saturation possible for DCI

Raw CCFL color gamut

- Standard CCFL backlight used (no enhancements)
- Raw gamut slightly exceeds REC.709
- Blue undersaturated
- Green has too much cyan, correct with +30 to +50R
- Red slightly oversaturated
- Tough to match 709 space exactly as blue channel is undersaturated

Raw CCFL color gamut

- Standard CCFL backlight used (no enhancements)
- Raw gamut slightly exceeds REC.709 in area
- Blue close to ideal
- Green has too much cyan
- Red slightly oversaturated
- Not appropriate for use as a "critical" monitor as color space is inaccurate

Raw CCFL color gamut

- Standard CCFL backlight used (no enhancements)
- Raw gamut smaller than the REC.709 space
- Blue close to ideal
- Green has too much cyan
- Red has too much yellow
- Cyan coordinates are close
- Not appropriate for use as a "critical" monitor as color space is undersized

Plasma Example #1

Raw color gamut

- Standard PDP phosphor formulations used
- Blue close to ideal
- Red is over-saturated
- Green needs more yellow and less cyan (add +30R)
- Closer match to REC.709 gamut than LCD, also closer to DCI gamut

Plasma Example #2

Raw color gamut

- Standard PDP phosphor formulations used
- Blue close to ideal
- Red is slightly over
- Green has too much cyan/blue to be correctable
- Not appropriate for use as a "critical" monitor without gross correction in green channel

DLP Example #1

Gamut constrained to REC.709

- Single-chip DLP HT projector
- Resolution: 1280x720
- Advanced color gamut mapping used
- Lamp 250W UHP
- Covers virtually all of the REC709 color space
- Blue and green are slightly undersaturated

DLP Example #2

Raw color gamut

- Single-chip DLP HT projector
- Resolution: 1920x1080
- Advanced color gamut mapping used
- Lamp 250W UHP
- Blue coordinate is close
- Green coordinate shifted towards cyan
- Red coordinate shifted towards yellow
- Difficult to match REC709

LCOS Example

Raw color gamut

- 3-panel LCOS HT projector
- Resolution: 1920x1080
- Advanced color gamut mapping used
- Lamp 200W UHP
- Splits REC709 and DCI gamut
- Red and blue points slightly off from optimum

Raw color gamut

- 3-panel LCD HT projector
- Resolution: 1920x1080
- Advanced color gamut mapping used
- Lamp 150W UHP
- Covers 100% of REC709 space (uncorrected)
- Blue and red points need minor correction, green has too much cyan in it (correct with +60 to +80R)

Raw color gamut

- 3-panel LCD HT projector
- Resolution: 1920x1080
- Advanced color gamut mapping used
- Lamp 160W UHP
- Covers most of REC709 space
- Blue and red points need minor correction, green has slightly too much yellow (correct with +20 to +30C)